Už několikrát zde padlo, že ve fotografii převádíte trojrozměrný svět kolem nás do dvourozměrného obrázku, přičemž je jedno, jestli ve finále skončí na papíře, nebo jen na monitoru. Pokračovat ve čtení „Popředí, střední pole, pozadí“
Linie
Linie je nejjednodušším a zároveň nejsilnějším grafickým prvkem. Přitom je ideálním nástrojem pro vedení oka obrazem. Lidské oko totiž, jakmile linii uzří, instinktivně ji následuje a sklouzne se po ní jako po banánové slupce. Linií tedy můžete chytře využít ve svůj prospěch – pokud například fotografovaný objekt umístíte na jejich konec, budou fungovat jako vodící linky (leading lines) a divákovo oko se – chtě nechtě – sveze přímo k cíli.
Přitom linie nemusí být nutně rovná a dokonce ani nemusí být spojitá (souvislá). Pokud dokážete najít sérii vhodně uspořádaných samostatných bodů, náš mozek si linii „vytvoří“ sám na základě vlastních zkušeností s existujícími koncepty. Dobrý příklad je třeba úvodní fotka z článku o perspektivě:
Přestože hlavice a patky pilířů jsou jen sérií diskrétních „bodů“ v prostoru, jejich uspořádání je takové, že náš mozek jednotlivé body podvědomě propojí a vytvoří vodící linie pro oko, které se zastaví na fotografovaném objektu (turisté).
Důležité na liniích je však především to, jaký pocit navozují. Svislé a vodorovné linie působí klidně a staticky, protože zvykově představují objekty nehybně stojící (stromy) či ležící (horizont, vodní hladina). Naproti tomu linie diagonální působí značně dynamicky, protože připomínají objekty v procesu pádu. Zajímavé je, když se obojí potká v jedné fotce – například zde je všudypřítomný rytmus statických svislých linií narušen jedinou diagonálou. S ní fotka nepůsobí ani zdaleka tak poklidným a tichým dojmem, jakým by působila jen se svislými kmeny. Šikmý strom do fotky vnáší značný neklid, nestabilitu a dynamiku (přestože se ve skutečnosti nikam nepohybuje).
Přitom nemusí jít jen o fotky krajiny – vzpomeňte na příspěvek o Robertovi, kde byly aplikovány stejné principy.
Podobně lze uvažovat i o tvaru linie – je-li oblá, zakřivená či jde-li třeba o vlnovku, navozuje daleko větší pocit dynamiky než rovná linie, která působí klidněji (i když je třeba orientována diagonálně).
A jak to všechno zužitkovat při hledání odpovědi na otázku jak komponovat? Především musíte jít do sebe a nejprve vycházet z toho, jak na Vás scéna před Vámi působí nebo jaký pocit chcete na diváka přenést. Pokud cítíte ticho, klid a mír, volte kompozici statickou, aby Vaše fotka takové pocity přenesla. Cítíte-li neklid, pohyb a energii, komponujte dynamicky s výraznými diagonálními liniemi.
. . . [ o ] . . .
Co je kompozice?
Konečně přichází pokračování Fotoškoly. V prvním modulu jsme se seznámili s tím, jak fotografie funguje po technické stránce. Druhý modul budeme věnovat tomu, jakým způsobem uspořádat obraz tak, aby dával smysl, aby byl co nejpůsobivější a abyste dokázali přivést oko diváka tam, kam chcete. Už v Prologu jsem sliboval, že druhý modul bude náročnější. Že se budete muset trošku zamyslet. Takže, je to tu.
Předstupněm tohoto příspěvku (a vlastně druhého modulu Fotoškoly jako celku) je článek „Kompozice aneb úvaha o definicích“. Komu se nechce článek číst, shrnu podstatu:
Kompozice je způsob vidění.
Dobrá kompozice je taková, při které je způsob vidění nejsilnější.
Ve své podstatě jde o to, že nemá smysl zabývat se dogmatickými pravidly „dobrých“ či „špatných“ kompozic. Fotograf má (resp. měl by) sám v sobě hledat emocionální odezvu na to, co před sebou vidí, a pomocí obrazových prvků (např. linií, tvarů atd.) a výrazových prvků (např. perspektivy, hloubky ostrosti, světla atd.) hledat nejvhodnější způsob, jak oko diváka navést tam, kam chce. Zní to možná trochu složitě, ale zkuste se nad tím zamyslet. Pokud výše uvedenou tezi přijmete, odměnou vám bude až euforický pocit osvobození. Nejen že nebudete muset memorovat a myslet na desítky „zaručených“ pravidel z učebnic a aplikovat je. Nemusíte myslet ani na to, které z nich zrovna porušujete, a jestli je to v dané situaci opodstatněné. Všechno tohle totiž obvykle děláte v případě, že sami nemáte jasnou vizi, nebo ještě hůře – z obavy, co na to řeknou jiní/ostatní. Není ale důležité, co daná fotografie znamená pro VÁS? Obraťte pozornost dovnitř sebe sama a s tímto vědomím pak budete moci všechno s klidem hodit za hlavu a soustředit se na to podstatné – co před sebou vidíte a ze kterého bodu je vaše vidění nejsilnější.
Abyste ale mohli vyhodnotit místo a strategii nejsilnějšího vidění, musíte si nejprve odpovědět na to fundamentální:
CO vlastně fotím? Co je TO, co mě zaujalo?
Co chci svým divákům ukázat?
A nebuďte v odpovědích zbytečně obecní. Nebuďte líní zamyslet se a pojmenovat (stačí jednou větou) objekt vašeho zájmu. Pokud totiž nedokážete přesně říct, co fotíte, jak to pak chcete dobře zkomponovat? A jak potom chcete, aby to zprostředkovaně z vaší fotky pochopil divák, když to nevíte ani vy sami? Dovoluje-li to situace, obětujte JEDNU MINUTU konkretizování a pojmenování svého záměru. Věřte mi, že vám ta minuta bude připadat mučivě dlouhá. Jděte do detailu. Nestačí říct „přírodu“. V přírodě je spousta věcí – třeba jak mlha leží v údolí, jak slunce osvětluje vrcholky hor, jak se voda v jezírku točí a unáší barevné listí, jak stromy vrhají stíny atd. Nestačí říct „Moniku“ nebo „Robina“. I Monika a Robin se smějí, mračí, koukají přísně/vyděšeně/překvapeně/popleteně. I Monika i Robin mají nějakou osobnost, nějaký styl, nějakou činnost, kterou rádi dělají. Pojmenujte jednou větou to, co chcete na fotce ukázat. Možná váš překvapí, jak těžké to může být.
Jakmile budete mít v tomhle jasno (jedna minuta!), přejděte k další fázi. To jediné, co byste měli mít na paměti teď, je následující:
„Jednoduchost jako základní princip kompozice.
Cokoliv, co nepřispívá k fotografii, rozptyluje od ní.“
Jinými slovy – až se budete příště dívat do hledáčku nebo na displej vašeho přístroje, upamatujte se, co je námětem vaší fotografie. A podívejte se, co kromě vašeho námětu v hledáčku ještě vidíte. A cokoliv, co není oním námětem nebo s ním přímo nesouvisí, se pokuste z fotografie eliminovat. Změnou stanoviště, změnou ohniska, změnou perspektivy, rozostřením. Mějte na fotografii pouze to, co je námětem. Ostatní musí pryč, protože to odvádí pozornost od námětu. Že to nejde? Jeden filozof kdysi řekl, že „překážky jsou ony obávané věci, které spatříme, když odvrátíme pohled od svého cíle.“ Cílem je v našem případě mít na fotografii JEN ten námět. Je jasné, že to nejde vždycky a absolutně. Ale zkuste – namísto plácnutí fotky z výše očí a z místa, kde právě stojíte – hledat cestu, jak se co nejvíce k tomu cíli přiblížit.
Prostředkem, jak toho dosáhnout, je řada obrazových a výrazových prvků. Některé z nich, jako třeba linie či tón a kontrast, si přiblížíme v následujících kapitolách. Jiné, jako např. hloubka ostrosti či perspektiva, už máme v malíku od prvního modulu.
Nuže tedy, až příště vezmete fotoaparát do ruky, zkuste se na chvíli zastavit a zamyslet se v prvé řadě nad tím, co to vlastně fotíte a odkud je vaše vize nejsilnější. V druhé řadě – zda máte ve fotografii věci, které nesouvisí s námětem, a jestli by je nešlo nějakým způsobem dostat pryč. Pokud na tyto dvě věci dokážete pomyslet ještě před stisknutím spouště, jste na cestě k lepším fotografiím.
Praktické cvičení:
- Věnujte jednu celou minutu pojmenováním námětu.
- Podívejte se do hledáčku a zjistěte, co dalšího kromě námětu ještě vidíte. Zamyslete se, jaký vztah to má k hlavnímu námětu.
- Pokuste se všechno, co nemá spojitost s námětem, eliminovat či minimalizovat změnou stanoviště, perspektivy, úhlu pohledu či clonovým rozostřením.
- Opakujte body 1-3.
. . . [ o ] . . .
Perspektiva
Článek o perspektivě uzavírá první modul Fotoškoly. Počínaje koncem tohoto článku budete vybaveni nezbytným teoretickým základem praktického fungování fotografie. Nuže, k věci.
Perspektiva je optický jev, jenž způsobuje to, že vzdálené objekty se zdánlivě jeví menší než objekty blízké. Vlivem perspektivy se taktéž vzdálené objekty jeví blíže u sebe než ty blízké, aniž by tomu tak skutečně bylo. Každému z nás se v mysli jistě vybaví obrázek zdánlivě se sbíhajících železničních kolejí či krajnic dlouhé rovné silnice. Něco podobného můžeme vidět na úvodní fotce z Květné zahrady v Kroměříži.
Tento jev je tím výraznější, čím blíže k fotoaparátu ty blízké objekty jsou. A opačně, čím větší vzdálenost od fotoaparátu, tím méně výrazná perspektiva je. K čemu ale tento jev využít ve fotografii? Přirozeně, jako kreativní nástroj. Je-li perspektiva výraznější pro blízký objekt, můžeme jej jeho přiblížením k fotoaparátu zvýraznit a tím na něj upozornit. Pokud naopak chceme popředí potlačit a zvýraznit pozadí, musí popředí být daleko od fotoaparátu, tj. co možná nejblíže k pozadí.
Jak to ale prakticky provést?
Klíčem k manipulaci s perspektivou je primárně poměr vzdáleností
FOTOAPARÁT – POPŘEDÍ – POZADÍ,
sekundárně ohnisková vzdálenost objektivu. Se širokoúhlým objektivem můžeme jít k objektu blíže (čímž změníme výše uvedený poměr vzdáleností). S teleobjektivem musíme být od objektu daleko, aby se nám vešel do záběru. A v tom je celý fígl.
Chceme-li zdůraznit perspektivu, použijeme krátké ohnisko
a jdeme co nejblíže.
Chceme-li perspektivu potlačit, použijeme teleobjektiv.
Čím kratší ohnisko, tím větší bude perspektivní zkreslení. Čím delší ohnisko, tím více bude perspektiva potlačena. Pro srovnání si ukážeme 3 fotky. Na všech je zruba to stejné – Druhorozená v popředí a jeřáb v pozadí. Všimněte si ale, jak se se změnou ohniskové vzdálenosti mění i relativní velikost obou (rozklikněte pro větší verzi).
Zatímco na prvním obrázku Druhorozená neoddiskutovatelně dominuje, na druhé fotce už to tak jasné není. A na té třetí fotce už se musíte docela snažit, abyste Druhorozenou vůbec našli. Mezi jednotlivými fotkami jsem přirozeně musel změnit stanoviště. První fotka je cca z metru a půl ohniskem 24 mm, druhá asi z 6 metrů ohniskem 75 mm a na třetí fotku jsem se musel vzdálit zhruba na 25 metrů při použití ohniskové vzdálenosti 138 mm. Změnou stanoviště došlo vždy ke změně poměru vzdáleností já – Druhorozená – jeřáb.
Při jakém ohnisku ale perspektivu ani nezdůrazňujeme ani nepotlačujeme?
Perspektiva je veskrze obecný jev, který se projevuje vždy. Za „normální“ úroveň perspektivy můžeme považovat takovou, která je stejná, jakou běžně vidíme svýma očima. Zornému úhlu lidského oka přibližně odpovídá objektiv délky 50 mm (ona pověstná „padesátka“) nasazená na fotoaparát se snímačem velikosti 24×36 mm, tedy plného políčka kinofilmu (odtud „full-frame“). Proto se padesátce také říká „základní“ objektiv. Máme-li ve fotoaparátu snímač menší velikosti než full-frame (např. APS-C, cca 24×15 mm), podobnému zornému úhlu odpovídá objektiv délky 35 mm. Je-li snímač ještě menší, stejný zorný úhel bude mít ještě kratší objektiv. Fotky pořízené objektivem o stejném úhlu záběru jako má naše oko (tedy se stejnou perspektivou) se nám zdají nejpřirozenější, protože takto celý život vidíme svět kolem sebe.
V reálu
Pokud fotíme portrét, obecně se doporučuje používat delší ohniska. Potlačená perspektiva je totiž lichotivá k lidské tváři – lidé pak nemají velké nosy a zdeformované tváře jako při použití krátkých (kratších než 50 mm) ohnisek. Případně, pokud velký nos mají, dá se relativně zmenšit použitím dlouhého ohniska. Nikde však není psáno, že široké ohnisko je zakázáno použít. Vše závisí na konkrétním kreativním záměru. Na této fotce jsou moje ruce od hlavy vzdáleny asi tak 20 cm. Přesto vypadají daleko větší než hlava, právě díky velkému perspektivnímu zkreslení širokoúhlého objektivu (f=15 mm).
U krajin jsou dobře použitelná všechna ohniska – záleží pouze na tom, jak právě nám to vyhovuje nejlépe pro danou kompozici, resp. při jaké perspektivě najdeme bod nejsilnějšího vidění. Na této fotce je vzdálenost mezi popředím a pozadím odhadem 1,5 kilometru, přesto relativní velikosti stromů jsou skoro srovnatelné (f=360 mm).
Zoomování nohama?
V jedné zaručeně kvalitní příručce jsem četl, že není nutné mít teleobjektiv, protože můžeme „zoomovat nohama“ a ke vzdálenějším objektům prostě přijít blíž. Autor této poučky si zřejmě neuvědomil (nebo to záměrně zatajil), že pokud změníme stanoviště, změníme tím i poměr vzdáleností fotoaparát-popředí-pozadí. Tím ale změníme i perspektivu! Nohama sice můžeme přijít blíž, ale nezanedbatelně tím změníme celkové optické poměry ve snímku. Zoomovat nohama je tedy, z hlediska perspektivy, holý nesmysl.
Co byste si měli zapamatovat:
Čím kratší ohnisko, tím výraznější může popředí být. Čím delší ohnisko, tím více je popředí potlačeno.
* * * * *
Na tomto místě nezbývá než pogratulovat – právě jste se pročetli na konec prvního bloku Fotoškoly. Informace z tohoto prvního bloku stačí si osvojit, není nutné o nich nijak složitě přemýšlet. V druhém bloku pokročíme trochu dále a zaměříme se na to, co je to kompozice a které prvky lze v kompozici využít.
. . . [ o ] . . .
Vyvážení bílé
Vyvážení bílé je funkce, která u klasických fotoaparátů nemá obdobu. Pomáhá nám vyrovnat se s tím, že různé zdroje světla vydávají různě barevné spektrum. Vezměme to ale hezky od začátku.
Co je to bílá?
Fotoaparát je hloupý stroj a neumí vyhodnotit, co je to „správná“ barevnost. Neví, že když na bílý list papíru posvítíte svíčkou nebo žárovkou, bude papír na pohled sytě žlutý nebo oranžový (podle barvy aktuálního světla). Aby ale na našich fotografiích byly barvy správné (takové, jaké opravdu jsou, když na věci posvítíme neutrálním „bílým“ spektrem), musíme našemu fotoaparátu říct, CO je bílá, aby se tzv. „zkalibroval“ a reprodukoval bílou i ostatní barvy správně. K tomu ale potřebujeme vědět, JAK barevné to které světlo je, tj. potřebujeme jeho barvu nějak měřit.
Jak se měří barevná teplota
K měření barvy spektra nám slouží stupnice barevné teploty spektra, která se měří v jednotkách Kelvinů. Abychom si nemuseli všechny hodnoty na stupnici pamatovat, změřili chytří lidé teplotu spektra nejčastějších světelných zdrojů a přiřadili těmto teplotám příslušné piktogramy. To jsou ty obrázky, které můžete vidět na displeji svého fotoaparátu – žárovka, zářivka, sluníčko, blesk, mráček a domeček vrhající stín. Světelné spektrum těchto konkrétních světelných zdrojů má vždy zhruba stejné složení. Následující obrázek ukazuje, jakou barevnou teplotu jednotlivé světelné zdroje (resp. podmínky) mají.
Vyvážení bílé na fotoaparátu
Jak můžeme fotoaparátu říct, co je to bílá? Můžeme to udělat pomocí funkce vyvážení bílé (white balance – WB). Řekneme mu, jaký světelný zdroj právě (převážně) osvětluje scénu a on podle toho upraví reprodukci barev tak, aby byla co nejvěrnější. Vyvážit bílou můžeme na fotoaparátu několika způsoby:
- automaticky
- zvolením příslušného piktogramu
- ručním nastavením konkrétní barevné teploty v Kelvinech (u lepších přístrojů)
- uživatelským vyvážením s pomocí kartičky (viz dále)
Na následující fotce (na kvalitu a obsah nehleďte, je z mobilu a čistě jen pro ilustrační účel v tomto článku) jsou identifikovatelné dva různé druhy světelných zdrojů – časné ranní světlo a žárovky. Fotoaparátu jsem nastavil bílou na sluníčko (denní světlo, cca 5400 K). Jak můžeme vidět na levé straně na zdech 1. a 2. patra budovy, ranní světlo před východem slunce, tzv. „modrá hodinka“, je o dost modřejší než běžné denní světlo (odhadem cca 7500 K; asi podle toho se tak jmenuje). Žárovky osvětlení pouličního a uvnitř budovy jsou naopak sytě žluté až oranžové (cca 2800 K).
Co na bílou náš mozek?
Lidský mozek je neobyčejně chytrý orgán. Ze zkušenosti ví, že bílý papír je bílý. Dokáže se však sám vyrovnat s tím, že na bílý papír momentálně svítí jiné než neutrální spektrum. Ví, že papír je bílý a upraví si svoje vlastní vnímání barev tak, že papír i pod žárovkovým světlem vyhodnotí jako (téměř) bílý. Má v sobě vlastně zabudovanou funkci automatického vyvážení bílé a sám se podvědomě průběžně kalibruje podle toho, v jakém barevném prostředí se zrovna nachází. Fotoaparáty také umí vyvažovat bílou automaticky. Někdy (častěji než zřídka) ale bývají nepřesné – jistě jste se už setkali s tím, že fotky měly zvláštní žlutý nebo naopak namodralý nádech. A (také) proto je lepší vyvažovat bílou ručně. Co když ale teplotu okolního světla špatně odhadnete? Nemusíte si zoufat, na každý problém existuje řešení.
Jak nejpřesněji bílou vyvážit?
Pokud toužíte po ultrapřesné reprodukci barev v každé situaci, najděte ve svém fotoaparátu funkci uživatelského vyvážení bílé („Preset Manual WB“ nebo „Custom WB“). Dále budete potřebovat neutrální šedou kartičku – nejlépe zase ta 18% šedá – například taková. Ale pro vyvážení bílé stejně dobře poslouží i čistý list bílého (!) papíru. Proč? Protože bílý papír je, pokud jde o barvu, stejně neutrální jako 18% šedá, jen světlejší. (Pokud byste místo bílého papíru vytáhli z knihovny Babičku po babičce nebo původní vydání kuchařky M. D. Rettigové, s bílou asi moc nepochodíte.) Chceme-li mít pod určitým typem osvětlení přesné barvy, vytáhneme bílý papír, namíříme na něj náš fotoaparát a vyvážíme bílou uživatelsky (přesný postup pro svůj fotoaparát najdete v uživatelské příručce). Voila a kouzlo je hotovo. Vizir je zase bez práce.
Kromě neutrální šedé tabulky však můžete fotoaparátu ukázat i libovolnou jinou barvu. Fotoaparát se překalibruje tak, že tuto barvu bude považovat za neutrální a ostatní barvy reprodukuje podle toho. V závislosti na tom, na jakou barvu jej zkalibrujete, můžete dosáhnout až surrealistických výsledků – fantazii se žádné meze nekladou.
Proč bílou vyvažovat a co z toho?
Inu, jsou tu dva důvody. Za prvé, můžeme chtít přesnou reprodukci barev – z pochopitelných důvodů. Aby bílá bílá byla a modrá byla modrá a nebyla jiná. V takovém případě aplikujeme postup s šedou tabulkou nebo bílým papírem popsaný v předchozím odstavci. Za druhé, můžeme bílou uchopit kreativně a pomocí záměrně „chybného“ nastavení bílé docílit zajímavého barevného podání fotky. Pomocí funkce WB můžeme velmi snadno za pár sekund z bílého světla udělat modré nebo naopak béžové jen tím, že bílou schválně nastavíme na jiný barevný zdroj. Pokud byste chtěli vyvážit bílou u klasického fotoaparátu, museli byste vyměnit roličku filmu za jiný typ, což bývá v terénu krajně nepohodlné. Tuto funkci nám kinofilmoví kolegové (při čekání na převinutí roličky filmu) mohou jen závidět. Na následujícím obrázku se podívejme, jak vypadá stejná fotka, které jsem pokaždé vyvážil bílou jinak:
Jak vidno, prosté nastavení bílé lze úspěšně prohlásit za výrazový prvek. Existují samozřejmě určité limity dané kontextem a použitím fotografie. Zatímco obloha v krajinářské umělecké fotografii může klidně hýřit téměř libovolnou barvou (pomineme-li fakt, že by taková skutečně mohla být), taková pleťová barva má jen určité poměrně úzké spektrum odstínů, ve kterém nám připadá „správná“. Toto spektrum pramení z naší zkušenosti. Vidíme-li na fotce pořízené pod běžným denním světlem modré nebo pomerančově oranžové lidi, podvědomě nám to nepřipadá v pořádku, protože takovou barvu lidé za daných podmínek normálně nemívají. Nebo pokud chceme ukázat, jak něco vypadá ve skutečnosti (reprodukovat realitu), je věrné podání barev více než žádoucí. Buďte tedy obezřetní a dobře rozmýšlejte, zda je taková „kreativní bílá“ v daném kontextu přijatelná.
Kdo pořizuje fotografie v surovém formátu RAW, nemusí si s vyvážením bílé moc dělat starosti, protože může nastavit „správnou“ barevnou teplotu i později v počítači bez ztráty kvality.
Praktická cvičení:
- Nastavte na fotoaparátu sluníčko a udělejte 4-5 fotek – jednu pod umělým osvětlením (žárovka) a tři fotky z okna v různých denních dobách – když se ráno rozednívá (vstáváte-li po desáté, první fotku vynechte), po obědě a večer, když slunce zapadá a než se setmí. Pozorujte, jakou barvu má světlo na fotkách. Aby výsledek byl jasněji viditelý a barvy více saturované, nastavte expoziční kompenzaci na přibližně -1,7 EV.
- Nastavte WB na sluníčko a udělejte fotku pod žárovkovým osvětlením. Vezměte list bílého papíru a uložte do fotoaparátu uživatelskou hodnotu WB. Nyní pořiďte fotku s uživatelskou hodnotou WB a pozorujte, jak se barevné podání změnilo.
Co byste si měli zapamatovat:
- K čemu je funkce vyvážení bílé
- Jak se v průběhu dne mění teplota spektra – v jakých podmínkách je světlo červené, v jakých neutrální a v jakých namodralé.
. . . [ o ]. . .
Hloubka ostrosti
Co je to hloubka ostrosti
Každá fotografie (nebo aspoň většina těch povedených) je zaostřena do určitého místa, do určité vzdálenosti od objektivu. Tomu místu, kam je zaostřeno, se říká „rovina zaostření“. Vše, co se nachází v této rovině či její bezprostřední blízkosti (před a za ní), je na výsledné fotografii ostré. Vše, co je mimo rovinu zaostření a její bezprostřední blízkost, vnímá naše oko jako neostré (rozostřené). A právě rozsah této „bezprostřední blízkosti od roviny zaostření“ nazýváme hloubka ostrosti (Depth of Field, zkráceně DOF). Jednoduše řečeno je hloubka ostrosti pásmo, odkud kam vnímá naše oko objekty na fotografii jako přijatelně ostré. Zjednodušeně rozlišujeme velkou a malou hloubku ostrosti. O velké hloubce ostrosti hovoříme, když je na fotografii ostrá většina objektů (vše od popředí až do pozadí), typicky u krajinářské fotografie. Malá hloubka ostrosti naopak znamená, že ostré je pouze něco. Přitom platí, že pokud je na fotografii něco neostré, mělo by jít o záměr fotografa, nikoliv o jeho selhání.
Příklad fotografie s velkou hloubkou ostrosti (rozklikněte pro větší verzi):
K čemu slouží hloubka ostrosti
Hloubka ostrosti je jedním ze základních výrazových prvků fotografie. Schopnost hloubku ostrosti kontrolovat a pracovat s ní patří k elementárním dovednostem každého fotografa. Obecně se dá říci, že „co je ostré, to je důležité“ (a obráceně – co je důležité, mělo by být ostré). Náš mozek totiž pracuje tak, že ostrým místům obrazu automaticky přiřazuje vyšší prioritu a místům neostrým přiřadí prioritu nižší. Proto vlastně fotografové úmyslně některé části fotografie rozostřují – chtějí pozornost diváka nasměrovat do těch míst, která považují za důležitá, a naopak jiná místa, pro danou fotografii nedůležitá, upozadit. Tím fotograf divákovi podstatně usnadňuje proces „čtení“ a vyhodnocení fotografie – podprahově tím vlastně říká „chci, aby ses díval hlavně sem, ostatní části jsou pro mě nedůležité“.
Velká hloubka ostrosti se typicky používá u krajinářské fotografie (chceme ostré vše od popředí do pozadí). Malá hloubka ostrosti se typicky používá u portrétů, kdy za důležitou část fotky se považuje pouze portrétovaná osoba.
Fotografie s malou hloubkou ostrosti:
Čím je hloubka ostrosti ovlivněna
Chceme-li s hloubkou ostrosti pracovat, musíme v prvé řadě vědět, které proměnné ji ovlivňují a jakým způsobem. Pro potřeby základního modulu Fotoškoly se omezím na konstatování, jakým směrem jednotlivé prvky DOF ovlivňují a nebudu zabíhat do matematických vzorců (nikdy jsem to v praxi ani nepotřeboval).
A) Poměr vzdáleností fotoaparát – objekt – pozadí
Čím dál je zaostřený objekt (rovina zaostření) od fotoaparátu, tím je hloubka ostrosti větší. Čím je blíže, tím je DOF nižší. DOF je také tím nižší, čím větší je odstup zaostřeného objektu od pozadí. Lidsky řečeno – chcete-li mít rozostřené pozadí, mějte rovinu zaostření (=objekt zájmu) blízko k fotoaparátu a daleko od pozadí.
B) Velikost clonového otvoru
Pro malou hloubku ostrosti nastavujeme malá clonová čísla, např. F=2,8. Pro velkou hloubku ostrosti nastavujeme vyšší clonová čísla (např. F=16). (Funkční důkaz zahrnuje delší vysvětlení včetně zavedení definice další veličiny, čímž tady nechci zatěžovat – prostě to přijměte jako fakt.)
C) Ohnisková vzdálenost
Obecně platí, že čím kratší je ohnisková vzdálenost, tím vyšší je DOF. Chceme-li tedy něco/někoho více „odpíchnout“ od pozadí (pozadí více rozostřit), dosáhneme toho lépe s delší ohniskovou vzdáleností (teleobjektivy).
D) Velikost záznamového média
Souvisí s předchozím bodem C). Větší čip generuje nižší hloubku ostrosti, protože pro zobrazení „normálního“ zorného úhlu je potřeba delší ohnisková vzdálenost. Za „normální zorný úhel“ považujeme to, co vidíme vlastním okem. Ne náhodou je to (zhruba) stejný zorný úhel, jaký má objektiv s ohniskovou vzdáleností 50 mm na full-frame fotoaparátu (čip velikosti 24×36 mm). Proto se „padesátce“ často říká základní objektiv. Na menším APS-C čipu (23,7×15,6 mm) se stejného zorného úhlu dosahuje s objektivem 35 mm. Běžné kompaktní fotoaparáty s čipem o velikosti 6×8 mm dosahují stejného zorného úhlu při ohniskové vzdálenosti třeba 5 mm, takže u takových fotoaparátů lze s hloubkou ostrosti pracovat jen ve velmi omezené míře. Velikost čipu je však parametr, který nelze běžně měnit. Volíme jej pouze jednou – při pořízení fotoaparátu. Proto před nákupem více než o výrobci fotoaparátu a rozlišení přemýšlejte o velikosti čipu. Kdo říká, že na velikosti nezáleží, ten neví o čem mluví nebo záměrně lže. VĚTŠÍ JE LEPŠÍ! 😉
Hyperfokální vzdálenost
Pojednáváme-li o hloubce ostrosti, nelze tento termín vynechat. Pokud fotografujeme objekty, které jsou velmi blízko k objektivu (třeba půl metru či méně), a zároveň chceme mít ostré i pozadí (jako na příkladu nahoře), velmi často nedosáhneme dostatečně velké hloubky ostrosti ani při krátkém ohnisku a vysokém zaclonění. Ostření „na hyperfokální vzdálenost“ pak může být jedním z řešení. V podstatě jde o to, že pokud zaostříme přesně na nejbližší objekt, část hloubky ostrosti nacházející se před rovinou ostrosti je nevyužitá. Je tedy možné zaostřit „kousek za“ nejbližší objekt, čímž využijeme i přední část hloubky ostrosti a zároveň tím podstatně prodloužíme zadní hranici hloubky ostrosti.
Hyperfokální vzdálenost je potom vzdálenost, na kterou je potřeba zaostřit, tak aby vše od nejbližšího objektu až po nekonečno bylo přijatelně ostré.
Na internetu lze dohledat tabulky hyperfokálních vzdáleností pro jednotlivá ohniska a clonová čísla. V současné době boomu digitální fotografie však považuji tuto techniku již za zastaralou. Nesrovnatelně lepších výsledků v kvalitě fotografií lze dosáhnout technikou tzv. „vrstvení zaostření“ (focus stacking). Tato technika spočívá v pořízení více fotografií (alespoň 2) zaostřených na různá místa v celém poli a pozdější prolnutí fotografií v editoru tak, aby z každého snímku zůstala viditelná pouze ta zaostřená část. Pokud ovládnete techniku focus stackingu společně třeba s metodou HDR, dokonalým krajinářským fotkám už může stát v cestě jen to, že nedokážete vstát dost brzy ráno ;-).
Praktické závěry
Chceme-li vyšší hloubku ostrosti, budeme volit kratší ohniskové vzdálenosti, vyšší clonová čísla a rovinu zaostření umístíme dále od fotoaparátu (a blíže k pozadí). Chceme-li DOF nižší, zvolíme delší ohnisko, odcloníme objektiv třeba na F=2,8 nebo méně (Cože, na vašem přístroji to nejde nastavit?!? Tak alou do obchodu pro delší a světelnější objektiv! Takový Nikkor 200 mm f/2 je na portréty doslova k nezaplacení!) a pokud to jde, zmenšíme vzdálenost mezi fotoaparátem a fotografovaným objektem (rovinou zaostření) a naopak zvětšíme vzdálenost mezi rovinou zaostření a pozadím.
. . . [ o ] . . .
Histogram
Co je to histogram
Když už se bavíme o digitální fotografii, není možné nezmínit histogram. Ale nebojte se. Není to nic zásadního ani složitého. Užitná hodnota pro běžného fotografa v podstatě končí s rozlišením „moc vlevo“, „moc vpravo“ a „akorát“. Jakkoli můžete slovo histogram považovat za obscénní až sprosté, jedná se o statistiku rozložení jasů ve fotce. Ve své podstatě je to dvourozměrný sloupcový graf, kde na vodorovné ose je hodnota jasu od 0 (černá) přes všechny odstíny šedé až po 255 (bílá). Na svislé ose je znázorněna četnost, tj. kolik pixelů má konkrétní hodnota jasu (součet všech pixelů v histogramu by měl zhruba odpovídat rozlišení Vašeho fotoaparátu). Obvykle vypadá jasový histogram nějak takto:
Z tohoto konkrétního histogramu můžeme vyčíst: úplně černá (sloupec zcela vlevo) je zastoupena jen velmi málo, úplně bílá (sloupec zcela vpravo) není zastoupena dokonce vůbec. Drtivá většina pixelů se nachází někde mezi bílou a černou (což je správně). Četněji jsou zastoupeny tmavší tóny (velký tlustý kopec v levé polovině).
Dnes už běžně můžeme kromě jasového histogramu vidět i RGB verzi, který četnosti jasů dekomponuje na jednotlivé barevné kanály (R-červená, G-zelená, B-modrá).
Respektive, histogram celkového jasu (v obrázku ten světle šedý nahoře) je tvořen součtem jasů v jednotlivých barevných kanálech (děleno počtem kanálů). Každý bod (pixel) ve výsledné fotce je reprezentován kombinací těchto tří barev a jim příslušných hodnot jasů. Vzpomenu-li „střední šedou“ z příspěvku o expoziční kompenzaci, ta je reprezentována zápisem RGB (127,127,127). To znamená, že ve střední šedé jsou zastoupeny všechny tři barevné složky stejnou hodnotou jasu – a přesně uprostřed mezi 0 a 255.
K čemu se používá
Histogram každé fotky si můžeme (většinou) nechat zobrazit na displeji fotoaparátu. Jeho hlavní funkcí je umožnit fotografovi posoudit, zda exponoval správně. Zda nemá ve fotce místa s hodnotou RGB (255,255,255), tj. vypálená bílá bez jakékoliv kresby (clipping highlights), nebo naopak plochy s hodnotou RGB (0,0,0), tj. černočerná tma (clipping shadows). Tyto hodnoty obvykle nebývají záměrem fotografa. Fotograf je poměrně sobecký tvor a CHCE, aby na jeho fotce bylo něco vidět. Takže jej zajímají ty hodnoty „mezi“. S hodnotami „mezi“ se totiž dá pracovat v grafických editorech – světlá místa jdou ztmavit, tmavá místa zase zesvětlit – potřebujeme ale mít mezi jednotlivými pixely jasovou a barevnou variabilitu, aby zůstala zachována kresba. Přepálenou bílou (255,255,255) můžeme sice taky ztmavit, třeba na (210,210,210), ale zůstává nám jednolitá, téměř bílá plocha bez kresby a barvy, která je k ničemu. Analogicky s jednolitou černou (0,0,0). Můžeme ji sice zesvětlit na šedou (např. 50,50,50), ale pořád to bude jen flek jednolité šedé (všechny barvy jsou ve stejném poměru, žádná nepřevažuje). Proto se snažíme přepálenou bílou a černočernou tmu ve fotce pokud možno nemít.
Jak může histogram vypadat
Histogram nám může leccos napovědět. Může nám říct, že jsme fotku podexponovali (ve snímku jsou zastoupeny převážně tmavé tóny – histogram je natlačený doleva), nebo že jsme ji přeexponovali (ve snímku jsou zastoupeny převážně světlé tóny – histogram je natlačený doprava):
Může nám také prozradit, zda scéna, kterou fotíme, má nízký nebo vysoký kontrast (velikost rozpětí mezi světly a stíny) a zda je náš fotoaparát vůbec schopen dané rozpětí do jedné fotky zachytit. Takto například vypadá histogram scény s malým kontrastem (hluboké stíny ani vysoké jasy nejsou zastoupeny):
A takto vypadá histogram scény s vysokým kontrastem (někdy také říkáme „s vysokým dynamickým rozsahem“): černá (v obrázku zvýrazněna modře) i bílá (v obrázku zvýrazněna červeně) jsou zastoupeny hojně (vysoké sloupce na levém i pravém kraji) a bezpochyby existují tóny tmavší než „naše černá“ a tóny světlejší než „naše bílá“. Ale náš fotoaparát není schopen je do jedné fotky zachytit:
Intuice nám napovídá, že pokud náš fotoaparát nedokáže zachytit celý rozsah jasů i stínů do jedné fotky, o „cosi“ se připravujeme. V takovém případě můžeme buď zvolit svoje priority – exponovat dobře tu část, která je pro nás důležitá a zbytek obětovat – nebo zkusit např. metodu HDR.
Zkrátka, histogram je dobrou pomůckou digitálního fotografa. Kinofilmoví kolegové si o takové vymoženosti mohou nechat leda zdát. Na výsledek si musí počkat, až jejich film projde procesem vyvolání v temné komoře, zatímco my, děti digitální éry, vidíme výsledek na displeji ihned. Neberte však histogram nijak dogmaticky. Ano, obecně je dobré zachytit celý dynamický rozsah. Ale ve fotografii jsou mnohem, mnohem důležitější věci, než snažit se urputně exponovat tak, aby na fotce nebyly bílé body nebo kousek černé. O tom ale až někdy příště ;-).
Co byste si měli zapamatovat
- Co je to histogram
- K čemu se používá
- Jak vypadá histogram podexponované a přeexponované fotky
- Co je to kontrast (dynamický rozsah) scény
. . . [ o ] . . .
Expoziční kompenzace
Expoziční kompenzace (exposure compensation), někdy také nazývaná „korekce expozice“ jako jedna z funkcí fotoaparátu je v podstatě „vychýlení“ aktuálně použitých expozičních parametrů od hodnot, které naměřil expozimetr fotoaparátu, směrem ke světlejší nebo k tmavší výsledné fotce. Abychom snadněji pochopili, jak to funguje a k čemu je to dobré, musíme si nejdříve přiblížit, jak fotoaparáty expozici měří.
Jak fotoaparáty měří expozici
Všichni asi tak nějak tušíme, že dnešní fotoaparáty samy automaticky měří expozici a navrhují nám konkrétní hodnoty expozičních parametrů, které považují za správné. Jak tedy expozimetr funguje? Když fotoaparát na něco namíříme, expozimetr analyzuje množství světla odraženého do objektivu z různých částí snímku. V některých částech je světla více, v některých méně. Všechny naměřené hodnoty nějakým způsobem zprůměruje a navrhne nám takové parametry času, clony a citlivosti, které míří „někam doprostřed“, přesněji na „střední šedou“. Střední šedá je hodnota jasu, která subjektivně leží uprostřed mezi nejsvětlejší (bílou) a nejtmavší (černou) změřenou částí obrazu (proto střední šedá). Výchozím předpokladem přitom je, že průměrná odrazivost všech předmětů na scéně je průměrná. Fotoaparát se tak snaží nějakým rozumným kompromisem zachytit co možná nejvíce detailů ve světlých i v tmavých částech obrazu.
Režimy měření expozice
Zde je na místě zmínit, že fotoaparát obvykle disponuje třemi režimy měření expozice – zónové, středové a bodové. Ve své podstatě jde o určení oblasti snímku, ze které má fotoaparát vyhodnocovat expozici. Zónové měření (označuje se také jako poměrové nebo Matrix-metering) vyhodnocuje jas ze všech oblastí snímku, resp. z určitého počtu obrazových bodů, které jsou rozmístěny po celé ploše senzoru. Středové měření (center-weighted metering) vyhodnocuje jas pouze ze středové oblasti snímače (u lepších fotoaparátů lze volit velikost této oblasti). Okrajové části přitom ignoruje a dbá na to, aby středová oblast měla expozici středního jasu. Bodové měření (spot metering) vyhodnocuje expozici pouze z maličké oblasti snímku, která je zpravidla svázána s konkrétním zaostřovacím bodem (což je logické – místo, kam máte zaostřeno, je považováno za nejdůležitější, a proto by mělo být i správně exponované).
Někdy automatika selhává
V určitých situacích je automatické měření expozice sice správné matematicky, ale ne logicky. Jedná se o situace, kdy se na scéně objeví předměty, které mají o hodně vyšší nebo naopak o hodně nižší než průměrnou odrazivost (hodně světlé nebo hodně tmavé předměty). Expozimetr totiž nedokáže vyhodnotit odrazivost – neví, zda se dívá na slabě osvětlený předmět s vysokou odrazivostí, nebo na silně osvětlený předmět s nízkou odrazivostí. Umí vyhodnotit jen množství odraženého světla. Když je světla moc, bude navrhovat krátké časy a hodně zavřené clony. Pokud je odraženého světla málo, bude navrhovat delší časy a otevřené clony. V takových situacích je pak na nás, fotografech, abychom fotoaparátu řekli, že automaticky naměřené hodnoty jsou z logického hlediska nesprávné. Že jsme si vědomi toho, že na scéně jsou předměty s neprůměrnou odrazivostí a že jím (fotoaparátem) změřenou expozici chceme korigovat tak, aby byla logicky správná (odtud název „korekce expozice“). A k tomu právě slouží funkce kompenzace (korekce) expozice. Na fotoaparátu hledejte piktogram čtverce rozděleného úhlopříčně, s plusem a mínusem v jednotlivých polovinách:
Expoziční kompenzace funguje vychýlením po číselné ose v jednotkách EV směrem od nuly na jednu nebo na druhou stranu. Automaticky změřená expozice má na ose hodnotu 0,0. Chceme-li fotku světlejší, kompenzujeme do plusových hodnot (např. +1 EV), chceme-li fotku tmavší, kompenzujeme do mínusu. Fotoaparát na základě tohoto pokynu upraví expoziční parametry, které nemá pevně dané z podstaty pracovního režimu. Pracuje-li např. v režimu priority clony (A), kompenzuje expoziční čas (případně ISO), protože clonové číslo volí fotograf (parametry pevně nastavené fotografem měnit nemůže).
Příklady z praxe
Typickou situací, kdy automatika selhává, jsou fotky v zimě na sněhu. Sníh má vysokou odrazivost, do objektivu tak odrazí abnormálně vysoké množství světla. Expozimetr na to reaguje se strojovou přesností sobě vlastní a navrhne nízké ISO, krátký čas a velké clonové číslo tak, aby scéna byla ve výsledku na fotce „středně šedá“. My však víme, že sníh není středně šedý (tedy, většinou), ale bílý. Musíme tak korigovat expozici do plusu, abychom fotoaparátu vzkázali: „Hej kámo, tohle je sníh. A ten má být hodně světlý!“ Na následující fotce květinky spící pod sněhem vidíme, jak to vyhodnotil expozimetr – střední šedá. Pro přijatelný výsledek však bylo nutné korigovat expozici o 2 stupně do plusu. Sníh hned vypadá o poznání přirozeněji:
Analogicky, když namíříme hledáček na něco tmavého (například uhlí), expozimetr vyhodnotí nedostatek odraženého světla. Bude navrhovat delší časy a otevřenou clonu, aby výsledná fotka byla středně šedá. My však víme, že uhlí má nižší než průměrnou odrazivost a že pokud budeme věřit automatice, ve výsledku bude fotka přeexponovaná (co mělo být tmavé, má teď střední jas). Musíme proto fotoaparátu říct: „Hej kámo, uber. Fotím uhlí.“ Následující fotka vyžadovala korekci -1 EV, protože je na ní převaha velmi tmavých tónů. Kdybych nechal expozimetru volnou ruku, nechal by se tmavými tóny zmást a nejvíce osvětlené části tváře muže by byly přeexponované bílé fleky bez kresby.
Ale jak mám poznat, kdy kompenzovat a o kolik?
Inu, ze zkušenosti. Vezměte si fotoaparát a foťte různé scény (to je domácí úkol z této kapitoly;-)). Ale tentokrát nemačkejte spoušť bezmyšlenkovitě jako doposud. Tentokrát zkuste dopředu odhadnout, jak expozimetr scénu vyhodnotí. Fotíte-li převážně tmavou scénu, bude zřejmě potřeba korigovat expozici do mínusu. Fotíte-li převážně světlou scénu, bude zřejmě potřeba korigovat do plusu. O kolik? Čím je scéna světlejší, tím víc. Pro přesnější a snáze předvídatelné výsledky přepněte na bodové měření expozice. Než uděláte 100 fotek, budete mít docela dobrý odhad, jak expozimetr vašeho fotoaparátu pracuje, a ve kterých situacích je potřeba korekci expozice použít.
. . . [ o ] . . .
Expozice (5) – shrnutí
Opakování
Nyní už víme, které parametry ovlivňují expozici – jsou to čas, clona a ISO. Změna hodnoty každého z nich vede ke změně expozice – pokud jeden parametr změníme a zbylé dva necháme stejné, fotka bude jinak exponovaná – světlejší nebo tmavší – v závislosti na tom, kterým směrem parametr změníme.
Z předchozích kapitol si pamatujeme, že fotka bude světlejší, když:
- prodloužíme čas (za delší čas pronikne ke snímači více světla)
- otevřeme clonu (větším otvorem pronikne více světla)
- zvýšíme ISO (snímač bude citlivější na světlo)
Fotka bude tmavší, pokud parametry změníme opačným směrem, tj. zkrátíme čas, zavřeme clonu (zvýšíme clonové číslo) nebo snížíme ISO. A teď přijde to podstatné.
Expoziční reciprocita
Z první kapitoly víme, že každá scéna má určité (vnějšími podmínkami dané) množství (přirozeného) světla, které nemůžeme ovlivnit. Tomuto množství světla (=expozici) odpovídá určitá kombinace expozičních parametrů, například:
ISO 200, čas 1/250, clona f/8
Pokud se nám hodnota některého z parametrů nelíbí, můžeme ji změnit na takovou, jakou zrovna potřebujeme. Aby však nedošlo ke změně expozice (tj. aby fotka nebyla světlejší nebo tmavší než má být), musíme tuto změnu zároveň kompenzovat změnou ostatních parametrů. Teď už asi tušíte, k čemu je ta slavná hodnota EV, a proč jsou jednotlivé parametry expozice odstupňovány konstantním násobitelem. Je to proto, abychom mohli jednoduše měnit parametry podle aktuálních potřeb a záměru a kompenzovat je recipročním způsobem tak, aby nedošlo k ovlivnění expozice. Změníme-li čas o -1 EV, musíme změnit ostatní parametry o +1 EV. Přitom (většinou) nezáleží na tom, který z ostatních parametrů změníme. Ve výsledku se součet změn musí vždy rovnat nule, aby nedošlo k ovlivnění expozice.
Vezměme v úvahu naši modelovou expozici ISO 200, 1/250, f/8. Chceme-li fotit na nižší clonu f/4, je to změna o +2 EV. Abychom zachovali stejnou expozici, musíme zkrátit čas na 1/1000 (-2 EV) nebo zkrátit čas na 1/500 (-1 EV) a zároveň snížit ISO na 100 (-1 EV). Expozice ISO 200, 1/250, f/8 je tedy stejná jako expozice ISO 100, 1/500, f/4. A je také stejná jako ISO 800 (+2 EV), 1/125 (+1 EV), f/22 (-3 EV).
V praxi
Abychom nemuseli zdlouhavě počítat změny EV v terénu, fotoaparát expozici měří a reciproční změny dopočítává sám v závislosti na zvoleném režimu fotografování. Jsme-li v automatickém režimu, o nic se nemusíme starat a fotoaparát vše spočítá a nastaví za nás. Automatický režim je však dobrý leda tak pro slečinky, které dělají selfíčka mobajlem na fejsbůk nebo instáč a slovo expozice je pro ně stejně obskurní a sprosté jako třeba mytí nádobí. To ale není náš případ. My jsme fotografové, a tak používáme režimy poloautomatické – prioritu clony „A“ (Aperture priority – nastavujeme clonové číslo, fotoaparát dopočítá čas) a prioritu času „S“ (Shutter priority – nastavujeme čas, fotoaparát dopočítá clonu), případně můžeme sáhnout i po plném manuálu „M“ (nastavujeme clonu i čas). My fotografové totiž víme, kdy potřebujeme krátký a kdy dlouhý čas. Víme, kdy potřebujeme velkou clonu. A víme také, jak to na fotoaparátu nastavit (kdo neví, zastydí se, že si nevzal k srdci mou dobře míněnou radu z Prologu, a přečte si návod k obsluze fotoaparátu).
Co byste si měli zapamatovat:
- Opakování základních řad expozičních parametrů (zejm. clonových čísel);
- Co je to expoziční reciprocita;
- Ve kterých režimech lze nastavit které parametry;
. . . [ o ] . . .
Expozice (4) – ISO citlivost
Citlivost ISO udává citlivost snímače na světlo. Přitom snímač samotný nijak přímo ovlivnit nemůžeme, ten pracuje pořád stejně – měří úroveň světla, tzv. signál. Za snímačem (myšleno cestou ze snímače na paměťovou kartu) je však zařízení, které signál zesílí, pokud je slabý (rozumějte je-li málo světla). A my můžeme ovlivňovat, jak moc ten signál zesílíme. Funguje to podobně jako zesilovač hlasitosti na televizi nebo rádiu – otáčením kolečka hlasitost zesilujeme nebo zeslabujeme.
Citlivost se standardně udává v normovaných ISO jednotkách a zhruba odpovídá citlivosti kinofilmů. Mezi jednotlivými hodnotami citlivosti jsou (opět zcela překvapivě) odstupy se základním násobitelem 2 (1 EV). Základní stupnice tedy vypadá takto:
50 100 200 400 800 1600 3200 6400 …atd.,
přičemž opět můžeme volit zpravidla dvě mezihodnoty. Největší výhodou digitální fotografie ve srovnání s kinofilmem je skutečnost, že citlivost můžeme měnit mezi jednotlivými fotkami zcela libovolně, stejně jednoduše jako clonu nebo čas. U kinofilmových fotoaparátů změna citlivosti vyžaduje vyměnit roličku filmu za jinou, jiné citlivosti (jiné hrubosti zrn světlocitlivých chemikálií), což je v terénu dost nepraktické (Bůh požehnej digitál).
Citlivost ISO a šum
Mohlo by se to zdát jako absolutní výhra. Zesílení signálu (vyšší ISO) s sebou však přináší jeden negativní jev – obrazový šum. Šum je vlastně falešný náboj, který na snímači vzniká působením tepla (elektronika se zahřívá) a který nenese žádnou obrazovou informaci. Ve fotce se projeví barevnými body vyššího jasu a nejvíce se objevuje v tmavých částech fotky. Jeho rozmístění a struktura jsou ryze náhodné (Gaussovské). Šum snižuje ostrost fotky a celkově ji znehodnocuje. Fotka s šumem vypadá asi takto (je to ten barevný bordel ve fotce):
Teoreticky si to můžeme představit asi tak, že náš snímač při každé fotce generuje určitou hladinu náhodného náboje (=šumu), kterou nemůžeme ovlivnit. Jeho úroveň bude například 1. Pokud fotíme v dostupném světle, jehož úroveň bude dostatečná pro dobrou expozici (například 50), nebudeme muset signál zesilovat. Klesne-li však úroveň dostupného osvětlení na polovinu (o 1 EV, tj. na 25), musíme 2x zesílit signál, abychom dostali správnou expozici. S úrovní signálu však zesilujeme i šum, takže nyní máme sice signál zesílený na úroveň 50, ale šum již na úrovni 2. Klesne-li úroveň dostupného osvětlení o 3 EV (na 6), můžeme sice čudlíčkem zesílit citlivost o 3 EV (cca 8x), takže výstupní hodnota signálu bude opět 50, ale 8x zesílíme také šum, který už bude na úrovni 8. Na základní citlivosti tedy v našem teoretickém příkladě máme poměr signálu k šumu 50:1. Zesílíme-li citlivost o 3 EV, poměr signálu k šumu bude 50:8. Platí tedy, že čím vyšší ISO, tím vyšší šum, přičemž zároveň roste podíl šumu v obraze (jinými slovy klesá odstup signálu od šumu).
Velikost snímače a šum
Úroveň a projev šumu v obraze přímo závisí na velikosti světlocitlivé buňky, neboli „pixelu“ (to jsou ty titěrné věcičky, kterých má váš snímač několik „mega“). Fyzika je jednoduchá – čím větší je každá jednotlivá buňka, tím více světla (signálu) dokáže zachytit (můžete si to představit třeba jako okno do místnosti – čím je větší, tím více světla může projít). Čím více signálu dokáže buňka zachytit, tím méně je potřeba signál při zpracování zesilovat. No a čím méně je potřeba signál zesilovat – tadáááá, jsme doma – tím nižší je obrazový šum, který degraduje fotku. Pokud tedy vezmu dva snímače stejné velikosti, z nichž jeden bude mít rozlišení 10 Mpix a druhý 20 Mpix, buňky na tom druhém musí mít logicky poloviční velikost, aby se tam všechny vešly. A buňka poloviční velikosti logicky zachytí méně světla. Snímač s vyšším rozlišením tak bude, ceteris paribus, nevyhnutelně generovat vyšší šum.
Snímače v malých kompaktních fotoaparátech jsou řádově mnohem menší, než snímače v zrcadlovkách, a snímače v mobilních telefonech a tabletech jsou zase řádově menší než snímače v kompaktních fotoaparátech. Přesto disponují srovnatelným rozlišením (dnes v řádu 12-15 Mpix). Za slunného dne OK. Pokud ale klesne hladina dostupného světla a je potřeba volit vyšší ISO, fotky z malých snímačů bývají víceméně nepoužitelné. Megapixely holt nejsou všechno a na tomto poli marketing drtivě zvítězil nad zdravým rozumem. Uvažujete-li o koupi nového fotoaparátu, spíše než vyšší rozlišení volte větší velikost snímače.
Co byste si měli zapamatovat:
- základní stupnice citlivosti ISO
- zvýšení citlivosti zesiluje nejen signál, ale i šum